Mikroprzełączniki MS1 sterowane polem magnetycznym, wykonane w technologii MEMS

W ostatnich latach obserwuje się znaczący wzrost produkcji układów MEMS i systematyczne rozszerzanie się obszaru ich zastosowań. Wynika to z zalet technologii MEMS, do której należy zaliczyć niewielkie wymiary struktur, mały pobór mocy, integrację z układami scalonymi, rosnący stopień upakowania i niskie ceny. Jednym z układów wykonanych w tej technologii jest mikroprzełącznik MS1.

Posłuchaj
00:00

Konstrukcja MS1

Rys. 1. Budowa mikroprzełącznika MS1

Rys. 2. Zasada działania mikroprzełącznika MS1

Elementem ruchomym mikroprzełącznika jest galwanicznie naniesiona na krzemowe podłoże warstwa ferromagnetyka w postaci stopu FeNi o grubości 8μm. Płytka ta w chwili pojawienia się zewnętrznego pola magnetycznego zwiera kontakty elektryczne. Stan przełącznika (zwarty–rozwarty) jest determinowany przez kierunek linii sił pola magnetycznego.

Budowę mikroprzełącznika MS1 przedstawiono na rysunku 1. Pod wpływem zewnętrznego pola magnetycznego płytka ferromagnetyka jest magnesowana zgodnie z kierunkiem linii sił pola magnetycznego. Następuje zwarcie lub rozwarcie styków. Zmiana kierunku linii sił pola magnetycznego powoduje zmianę kierunku namagnesowania płytki ferromagnetyka i zmianę stanu styków przełącznika.

Rys. 3. Wymiary mikroprzełącznika MS1

Rys. 4. Mikroprzełącznik z magnesem ruchomym

Przełączenie następuje w chwili, gdy środek ruchomego magnesu przesuwa się poza środek mikroprzełącznika. Schematycznie zasadę działania MS1 zamontowanego na płytce PCB przedstawiono na rysunku 2. W tabeli 1 zamieszczono jego podstawowe parametry. Do zalet mikroprzełączników MS1 należy zaliczyć:

  • małe straty mocy,
  • dużą skalę integracji,
  • dużą precyzję przełączania,
  • małą histerezę,
  • małe wymiary styków,
  • możliwość montażu powierzchniowego,
  • szeroki zakres temperatur pracy od –40°C do +150°C,
  • zgodność z wymogami dyrektywy RoHS.

Przykładowe zastosowania

Tabela 1. Podstawowe parametry mikroprzełącznika MS1

Na rysunku 4 przedstawiono strefy zwarcia i rozwarcia styków mikroprzełącznika sterowanego magnesem neodymowym NdFeB o wymiarach 3×3×1mm. Odległość magnesu od mikroprzełącznika wynosi 2mm. Stan styków przełącznika determinuje obecność pola magnetycznego. W wielu przypadkach matryca mikroprzełącznika nie zawsze może pozostawać pod wpływem pola magnetycznego ruchomego magnesu.

W tym przypadku stosuje się magnes polaryzujący umieszczony pod płytką PCB. Podane na rysunku wielkości stref zwarcia i rozwarcia styków MS1 oraz położenie tych stref są pochodną wymiarów magnesów i ich odległości od mikroprzełącznika. W tym przypadku magnes ruchomy NdFeB charakteryzuje się wymiarami 3×1×1mm i szerokością szczeliny 2mm.

Magnes polaryzujący NdFeB charakteryzuje się wymiarami 2×2×1mm i szerokością szczeliny (równą grubości płyty PCB) 0,8mm. Strefa zwarcia styków wynosi 2mm. Mikroprzełącznik MS1 zamontowany na płytce PCB przedstawiono na rysunku 6.

Rys. 5. Mikroprzełącznik z magnesem polaryzującym

Rys. 6. Widok płytki PCB z zamontowanym mikroprzełącznikiem MS1

Podsumowanie

W artykule przedstawiono nowe możliwości zastosowań mikroprzełączników wykonanych w technologii MEMS. Mogą one znaleźć zastosowanie tam, gdzie decydującymi parametrami są miniaturyzacja i niezawodność działania w trudnych warunkach środowiskowych. Prosimy o kontakt: directors@dolam.pl.

Dolam SA
www.dolam.pl

Zobacz więcej w kategorii: Prezentacje firmowe
Komunikacja
Warto wybrać przemysłowy router Wi-Fi
Produkcja elektroniki
Montaż powierzchniowy – nowoczesna elektronika na zamówienie
PCB
Poradnik projektanta PCB - stosy warstw obwodów drukowanych
Pomiary
Voltcraft przedstawia nową serię multimetrów VC-900
PCB
Od pomysłu do produktu w kilka dni: siła szybkiego prototypowania PCB
Produkcja elektroniki
Zaawansowane maszyny i osprzęt do seryjnej produkcji wiązek
Zobacz więcej z tagiem: Artykuły
Magazyn
Wrzesień 2025
Magazyn
Sierpień 2025
Magazyn
Lipiec 2025

Najczęstsze błędy przy projektowaniu elektroniki i jak ich uniknąć

W elektronice „tanio” bardzo często znaczy „drogo” – szczególnie wtedy, gdy oszczędza się na staranności projektu. Brak precyzyjnych wymagań, komponent wycofany z produkcji czy źle poprowadzona masa mogą sprawić, że cały produkt utknie na etapie montażu SMT/THT albo testów funkcjonalnych. Konsekwencje są zawsze te same: opóźnienia i dodatkowe koszty. Dlatego warto znać najczęstsze błędy, które pojawiają się w projektach elektroniki – i wiedzieć, jak im zapobiegać.
Zapytania ofertowe
Unikalny branżowy system komunikacji B2B Znajdź produkty i usługi, których potrzebujesz Katalog ponad 7000 firm i 60 tys. produktów