Europejski bipolarny tranzystor SiGe 0,5THz

Powstało europejskie konsorcjum przemysłowo-akademickie, mające na celu opracowanie zaawansowanych, opartych na krzemie, bipolarnych tranzystorów o maksymalnej częstotliwości pracy 0,5THz na falach milimetrowych. Są przewidziane do zastosowań w łączności, w radarach, do przetwarzania informacji graficznych i do czujników. Zaplanowany na 36 miesięcy projekt, nazwany Dotfive, z budżetem 14,75 milionów euro, z wkładem 9,7 milionów euro z Komisji Europejskiej, staje się największym projektem nanoelektronicznym „More than Moore” w Siódmym Programie Ramowym KE.

Posłuchaj
00:00

Celem projektu jest zapewnienie w Europie silnej pozycji rynkowej dla krzemowo-germanowym bipolarnych tranzystorów heterozłączowych (SiGe HBT) do zastosowań na falach milimetrowych. Jest to próba wprowadzenia zastosowań mikrofalowych do krzemu, w przeciwstawieniu do używanych w tym zakresie innych półprzewodników, które są droższe, i nie pozwalają na scalanie na dużą skalę. W pierwszym roku głównym zadaniem projektu będzie osiągnięcie częstotliwości 300GHz z odpowiadającą jej zwłoką 3,5ps. Planuje się osiągnięcie w drugim roku 400GHz i 3ps, a w trzecim 500GHz i 2,5ps. Ostatecznie partnerzy zamierzają wkroczyć w zakres terahercowy, rozciągający się od 300GHz do 10THz. Otworzy to tę dziedzinę na wiele aplikacji, jak systemy przetwarzania informacji graficznych, zabezpieczania, czy medycznych i naukowych, eksploatowanych teraz przez inne technologie.

Początkowo projekt ma dostarczyć potwierdzenia koncepcji i wykazać możliwości technologii opartej na krzemie. Przygotowywany jest następny krok technologiczny, który pomoże przekroczyć rok 2012. Można będzie wtedy przejść do kolejnych projektów, bliższych fazy uprzemysłowienia.

Projekt Dotfive, prowadzony przez STMicroelectronics, połączył partnerów akademickich, którymi są Uniwersytet Keplera w Linzu (Austria), Państwowa Szkoła Elektroniki, IT i Radiołączności w Bordeaux, Uniwersytet Paryż-Południe (Francja), Techniczny Uniwersytet w Dreźnie, Uniwersytet Bundeswery w Monachium, Uniwersytet w Siegen i IHP (Niemcy), Uniwersytet w Neapolu (Włochy), Uniwersytet Badawczy w Leuven (Belgia) oraz partnerów przemysłowych, XMOD Technologies (Talence, Francja), GWT-TUD GmbH (Drezno, Niemcy) i Infineon Technologies (Monachium, Niemcy).

Krzysztof Pochwalski

Powiązane treści
SiGe - szybka i wydajna alternatywa dla krzemu
Zobacz więcej w kategorii: Gospodarka
Mikrokontrolery i IoT
Edge computing w praktyce przemysłowej – Mouser uruchamia centrum wiedzy dla inżynierów AI i IoT
Produkcja elektroniki
Kompleksowe źródło wiedzy o branży - Informator Rynkowy Elektroniki 2026
Produkcja elektroniki
Odkryj przyszłość elektroniki drukowanej!
Komponenty
Sprzedaż półprzewodników w 2025 r. najwyższa w historii. Logika i pamięci MOS najszybciej rosnącymi segmentami
Produkcja elektroniki
Era taniej elektroniki konsumenckiej dobiega końca
Projektowanie i badania
Atomowa precyzja planaryzacji półprzewodników dzięki nano-papierowi ściernemu z CNT
Zobacz więcej z tagiem: Artykuły
Magazyn
Luty 2026
Magazyn
Styczeń 2026
Magazyn
Grudzień 2025

Projektowanie układów chłodzenia w elektronice - metody obliczeniowe i symulacyjne

Rosnące straty mocy w nowoczesnych układach elektronicznych sprawiają, że zarządzanie temperaturą przestaje być jedynie zagadnieniem pomocniczym, a staje się jednym z kluczowych elementów procesu projektowego. Od poprawnego odprowadzania ciepła zależy nie tylko spełnienie dopuszczalnych warunków pracy komponentów, lecz także długoterminowa niezawodność urządzenia, jego trwałość oraz zgodność z obowiązującymi normami. W niniejszym artykule przedstawiono uporządkowane podejście do projektowania układów chłodzenia, obejmujące metody obliczania strat mocy, analizę termiczną oraz wykorzystanie narzędzi symulacyjnych, w tym modeli cieplnych implementowanych w środowiskach symulacji elektrycznych.
Zapytania ofertowe
Unikalny branżowy system komunikacji B2B Znajdź produkty i usługi, których potrzebujesz Katalog ponad 7000 firm i 60 tys. produktów