Inteligentny układ sterujący w suszarni

Zapotrzebowanie na urządzenia inteligentne, w tym także sprzęt AGD stale rośnie. Na rynek trzeba je wprowadzać coraz szybciej i produkować coraz taniej. Nowe urządzenia nie powinny ujemnie oddziaływać na środowisko, a energii powinny zużywać jak najmniej. Wymagania te pobudzają innowacyjność, przynoszącą korzyści techniczne i finansowe zarówno dla producenta, jak i dla klienta.

Jednym z przykładów tej tendencji w urządzeniach AGD są domowe powietrzne suszarki pralnicze, których sterowniki zawierają czujniki wilgotności względnej lub osuszacze powietrza, działające na tej samej zasadzie, co suszarki pralnicze. Osuszacze włączają się automatycznie, gdy wilgotność przekracza 65%, co zapobiega powstawaniu na tkaninach pleśni i strukturalnych uszkodzeń. Urządzenia te również mogą być używane do podnoszenia komfortu pomieszczeń mieszkalnych, w części definiowanego ustalonym zakresem temperatury i wilgotności.

Posłuchaj
00:00

Sterowanie wilgotnością

Suszarki zasysają powietrze, które przepływa wzdłuż powierzchni chłodzącej skraplacza, a skroplona wilgoć jest odprowadzana w postaci ciekłej. Suche powietrze jest następnie podgrzewane i wydmuchiwane wzdłuż wiszących mokrych tkanin. W trakcie przepływu odbiera od nich wilgoć.

Poprzednie wersje obecnych suszarek pralniczych działały w czasie kontrolowanym. Użytkownik ustalał czas osuszania powietrza. Po upływie tego czasu suszarka przestawała działać, niezależnie od tego, czy pranie zostało wysuszone całkowicie. Do suszenie 10 do 15kg tkanin suszarka powietrza w suszarni pralniczej wymaga średnio 1,2kW. To dość dużo, dlatego optymalizacja czasu suszenia może przynieść wymierne oszczędności. Dlatego w coraz większej liczbie urządzeń sterownik wyposaża się w czujnik wilgotności względnej.

Rys. 1. Schemat blokowy i składniki czujnika SHT.

Pierwsze sterowniki dla AGD opierały się na pomiarach mechanicznych - pasek tworzywa rozciągał się lub kurczył w zależności od wilgotności podobnie jak bimetal pod wpływem temperatury. Zmiana długości była przetwarzana na impulsy włączające lub wyłączające. Technika ta była kosztowna i niedokładna oraz obarczona błędami związanymi z kontaminacją. Ponadto plastykowe czujniki miały znaczną histerezę, powodującą nadmierne przedłużanie czasu suszenia, skutkujące zwiększeniem zużycia energii.

W drugiej generacji sterowników zastosowano elektroniczne czujniki wilgotności z uzyskiwanym w skomplikowanym układzie elektronicznym sygnałem analogowym. Oba rodzaje czujnika potrzebowały kalibracji, dokonywanej przez producenta sterownika. Wymagało to znacznych nakładów na dokładną aparaturę pomiarową i komorę klimatyzacyjną.

Trzecia i aktualna generacja to zespolony czujnik wilgotności i temperatury, jak np. seria SHTxx firmy Sensirion (rys. 1). Wszystkie jego obwody są scalone w jednym chipie CMOS, same czujniki, układy elektroniczne, pamięć z danymi kalibracyjnymi i interfejs cyfrowy, co w znacznym stopniu upraszcza konstrukcję sterownika. Czujniki są produkowane w standardowym procesie półprzewodnikowym CMOS, są rodzaju pojemnościowego, a zatem nadają się do środowiska o dużej wilgotności, są solidne, i charakteryzują się dużą stabilnością długoterminową.

Testy przy wilgotności 85%, w temperaturze 85°C, przez ponad 1200 godzin, wykazały odwracalny dryft wilgotności względnej tylko +2%. Dokładność wynosi ±3,5%. Dzięki zwartej konstrukcji czujnik nie wymaga kalibracji i poza rezystorem podciągającym nie wymaga dodatkowych elementów. Ze sterownikiem czujnik komunikuje się dwuprzewodowym łączem cyfrowym. (KKP)

Zobacz więcej w kategorii: Technika
Projektowanie i badania
Standardy badania odporności na ESD
Projektowanie i badania
Projektowanie układów chłodzenia w elektronice - metody obliczeniowe i symulacyjne
Projektowanie i badania
Chłodzenie bezwentylatorowe - radiatory i rurki cieplne
PCB
Pasywne i wspomagane metody chłodzenia PCB
Komunikacja
Wybór kabla HDMI - kluczowe parametry i znaczenie certyfikacji
Projektowanie i badania
Czym są impulsy HEMP?
Zobacz więcej z tagiem: Artykuły
Magazyn
Styczeń 2026
Magazyn
Grudzień 2025
Magazyn
Listopad 2025

Kiedy projekt elektroniki jest „wystarczająco dobry”, a kiedy staje się ryzykiem biznesowym

W projektowaniu elektroniki bardzo łatwo wpaść w pułapkę myślenia: „działa, więc jest OK”. Układ się uruchamia, firmware odpowiada, prototyp przechodzi testy na biurku. I na tym etapie wiele zespołów uznaje projekt za „wystarczająco dobry”. O decyzjach „good enough”, presji czasu i momentach, w których inżynieria zaczyna generować straty.
Zapytania ofertowe
Unikalny branżowy system komunikacji B2B Znajdź produkty i usługi, których potrzebujesz Katalog ponad 7000 firm i 60 tys. produktów