Czy Braindrop przyniesie nową erę w sztucznej inteligencji?

Sztuczna inteligencja (AI) oraz procesy nauczania maszynowego dawno przestały być jedynie akademickimi rozważaniami, a stały się poważną gałęzią rynku elektronicznego i informatycznego. Na razie większość operacji związanych ze sztuczną inteligencją wymaga do pracy dużych zasobów pamięci i mocy procesora, często nieosiągalnych w małych aplikacjach IoT i chipach zasilanych z baterii, przez co muszą działać na zasadzie offloadingu - obliczenia wysyłane są do chmur obliczeniowych, gdzie następuje ich przetworzenie. Aby umożliwić przetwarzanie danych lokalnie, naukowcy pracują nad neuroprocesorami (określanymi także procesorami neuromorficznymi) - chipami używającymi sztucznych neuronów, aby imitować swoim działaniem ludzki mózg.

Posłuchaj
00:00

Procesory neuromorficzne mogą być wykorzystywane na mnóstwo sposobów. Wiele aplikacji korzystających z proces deep learningu nie może działać w chmurze ze względu na zbyt duże opóźnienia w komunikacji, z kolei procesor neuromorficzny mógłby analizować dane w czasie rzeczywistym, wykorzystując do tego jedynie kilka mikrowatów mocy, komunikując się z chmurą tylko i wyłącznie w momencie, w którym potrzebne byłoby podjęcie działania przez człowieka. Powinniśmy zastanawiać się, jak możemy opracować sztuczny układ nerwowy do wielu różnych dziedzin. - mówi Kwabena Boahen - profesor Uniwersytetu Stanforda.

Jego najnowszy neuroprocesor - Braindrop - okazał się wydajniejszy od procesorów GPU Nvidia Tesla oraz innych rozwiązań stworzonych wcześniej przez środowiska akademickie. Braindrop został też zaimplementowany w krzemie przy użyciu technologii FDSOI (Fully Depleted Silicon on Isolator) 28 nm. Składa się on z 4096 krzemowych neuronów zaprojektowanych specjalnie do optymalizacji aproksymowania funkcji nieliniowych wykorzystywanych w procesie deep learningu. Innowacyjne rozwiązania zastosowane w procesorze pozwoliły znacząco zmniejszyć wymagania energetyczne Braindropa w stosunku do innych istniejących rozwiązań.

 
Kwabena Boahen, twórca procesora Braindrop

Nie wiemy, jak działa mózg

Największym problemem powstrzymującym badaczy przed stworzeniem w pełni działającego neuroprocesora jest brak wiedzy niezbędnej do jego poprawnego działania. O ile biologiczne procesy zachodzące w mózgu podczas przetwarzania danych oraz działanie komunikacji pomiędzy neuronami są znane, o tyle wciąż wielką niewiadomą pozostaje dokładny proces uczenia się ludzkiego mózgu. Ten kluczowy element układanki skutecznie uniemożliwia stworzenie w pełni sztucznej inteligencji - naukowcy nie są w stanie odtworzyć procesu, którego nigdy nie poznali.

W procesie deep learningu, czyli nauki komputera zadań naturalnych dla ludzkiego mózgu, takich jak rozpoznawanie mowy czy rozpoznawanie obrazów, kluczową funkcję pełni propagacja wsteczna (back propagation) - algorytm uczenia nadzorowanego wielowarstwowych sieci neuronowych. Nie znając sposobu, w jaki realizuje to ludzki mózg, algorytmy propagacji wstecznej stworzone przez naukowców wymagają olbrzymich zasobów pamięci oraz zajmują dużo czasu procesora, by zadziałać akceptowalnie. Mózg ludzki w dalszym ciągu rozwiązuje wybrane problemy dużo szybciej niż najsilniejsze superkomputery, niezależnie od zasobów pamięci, którymi dysponują.

 
Braindrop – struktura i prototypowa płytka

Podobne opinie były prezentowane przez naukowców zajmujących się sztuczną inteligencją i deep learningiem podczas warsztatów NICE - Neuro Inspired Computational Elements. "W mózgu człowieka zachodzi wiele fascynujących algorytmów, które wciąż leżą poza możliwościami deep learningu" - podsumował dyskusje szef działu algorytmów neuromorficznych w Intelu podczas wspomnianych warsztatów.

Powiązane treści
Sztuczna inteligencja zagrożona cyberatakami
Rynek chipów do AI podwoi się w ciągu 5 lat
Google wyprzedza Amazona w segmencie inteligentnych domów
Nvidia wyszkoli 5 tys. osób w zakresie wykorzystywania sztucznej inteligencji
Tiny ML - sztuczna inteligencja dostępniejsza niż kiedykolwiek
Zobacz więcej w kategorii: Gospodarka
Produkcja elektroniki
Infineon wdraża produkcję na 200-mm podłożach SiC
Komunikacja
Zagłuszanie i spoofing nawigacji satelitarnej
Aktualności
DigiKey uruchamia nową serię wideo poświęconą zrównoważonemu rozwojowi
Zasilanie
Nowe wzmacniacze mocy GaAs firmy CML Micro dla urządzeń zasilanych bateryjnie
Aktualności
Ukończono budowę elektronicznej zapory na granicy polsko-białoruskiej
Aktualności
Accordance prezentuje ultraszybkie rozwiązanie RAID dla dysków PCIe 4.0 NVMe M.2 – dedykowane AI i edge computing
Zobacz więcej z tagiem: Projektowanie i badania
Gospodarka
DigiKey sponsoruje KiCad
Targi zagraniczne
30. Międzynarodowa Specjalistyczna Wystawa Produkcji, Innowacji i Rozwiązań Inżynieryjnych BALTTECHNIKA
Gospodarka
Plessey wdraża system MES od Critical Manufacturing w celu wsparcia eksperymentalnych procesów produkcji microLED
Zapytania ofertowe
Unikalny branżowy system komunikacji B2B Znajdź produkty i usługi, których potrzebujesz Katalog ponad 7000 firm i 60 tys. produktów