Spiętrzanie struktur półprzewodnikowych stało się standardem dla układów cyfrowych

Coraz więcej układów półprzewodnikowych to spiętrzone pionowo wielostruktury, zawierające typowo układ cyfrowy, na którym osadzane są układy peryferyjne. Istnieje wiele metod spiętrzania: TSV (Through-Silicon-Via), stacked-die i package-on-package (PoP). Każdy z tych sposobów ma swoje zalety i wady, które warto znać po to, aby bardziej świadomie korzystać z nich we własnych urządzeniach.

Posłuchaj
00:00

Rys. 1. Struktura układu PoP

O ile o układach TSV i wersjach ze spiętrzonymi strukturami napisano już wiele, o tyle konstrukcjom PoP poświęca się mniej uwagi. Niemniej jest to obecnie jeden z najszybciej rozwijających się sposobów takiego spiętrzania, który dzięki wyjątkowej łatwości testowania zmontowanych płytek drukowanych jest chętnie stosowany przez producentów OEM. Większość typowych układów PoP zawiera jeden duży główny i złożony układ cyfrowy, będący centrum tworzonej aplikacji, który stanowi też mechaniczną bazę konstrukcyjną.

Na nim umieszczane są różnego rodzaju pamięci, a więc standardowe układy katalogowe, o ustalonym rozkładzie wyprowadzeń i tym samym niedające wielkiej dowolności rozmieszczania (rys. 1). Zatem jednym z głównych zadań projektowania jest skoordynowanie połączeń pomiędzy układem dolnym a górnymi. Staje się to dla projektanta znaczącym wyzwaniem, ma bowiem często do czynienia z układami rozmaitych producentów, a zatem o różnie rozmieszczonych wyprowadzeniach.

Bliskość struktur półprzewodnikowych w jednej obudowie sprzyja korzystaniu z szybkich połączeń szerokopasmowych i tym bardziej zmniejsza zapotrzebowanie na powierzchnię na płytce drukowanej. Spiętrzane pakiety układów scalonych zapewniają większą gęstość funkcyjną przy niezmienionej masie, ale wymagają gruntownego starania w zakresie organizacji. Planowanie układu spiętrzanych pakietów jest krytyczne w procesie opracowywania i ma znaczny wpływ na skomplikowanie i koszt gotowego produktu.

Planowanie układów o wielu podłożach

Rys. 2. Symulacje rozkładu elementów składowych wchodzących w skład PoP generowane przez program OrbitIO

Kluczem do powodzenia w tworzeniu układów PoP jest planowanie wtedy, gdy możliwości dokonywania zmian są największe. Dolny bazowy układ umieszczony w obudowie BGA powinien mieć tak rozmieszczone sygnały, aby te na obrzeżach obudowy (pad ring) były przeznaczone prawie wyłącznie do podłączenia układu górnego.

Celem jest takie rozmieszczenie pad ringu wejść-wyjść, które będzie zgodne z potrzebami łączenia obwodów logicznych rdzenia, zapewni możliwie najbardziej opłacalny sposób rozmieszczenia elementów w pakiecie, czyli najmniejszą liczbę warstw i przelotek oraz najmniejszą długość połączeń pomiędzy płytką drukowaną i wszystkimi układami w stosie.

Taki rodzaj skoordynowanego planowania projektu chipu, pakietu wieloskładnikowego, a w niektórych przypadkach również płytki drukowanej, jest wymagający i może być frustrujący - zwłaszcza przy metodach konwencjonalnych, które zostały opracowane do projektowania kolejnego, z użyciem programów narzędziowych i baz danych oddzielnych dla chipów i pakietów. Zagadnienie komplikuje się dodatkowo, gdy górny układ wykorzystuje połączenia drutowe (wirebonding), wymagające zapewnienia pól kontaktowych dla drutu.

Niestety podstawową trudnością w upowszechnianiu się układów spiętrzonych jest obecnie brak programów narzędziowych do planowania i realizacji takich konstrukcji. Poza zwykłym rozdzieleniem sygnałów konieczne jest kontrolowanie opóźnienia, odbicia i sprzężenia. Uwagi wymaga wykonanie planu zasilania pakietu układów scalonych, zwłaszcza gdy korzysta on z kilku różnych napięć zasilających, oraz rozmieszczanie kondensatorów odprzęgających na poszczególnych płaszczyznach spiętrzonej struktury.

Oprogramowanie powinno pomagać także we wprowadzaniu i ocenianiu sposobów łączenia w kontekście całego systemu, pod kątem możliwości wystąpienia pasożytniczych zakłóceń w sieci sygnałowej. Powinno też wykrywać nieciągłe ścieżki powrotne, rezonanse w płaszczyźnie zasilania i zasady odsprzęgania. To samo dotyczy wsparcia decyzji projektanta dla podziału na płaszczyzny zasilania.

Pierwsze produkty

Jednym z produktów narzędziowych EDA nowej generacji wspomagających projektowanie układów PoP jest OrbitIO Planner firmy Sigrity. Stosuje on zunifikowany model danych chip-pakiet-płytka i automatycznie rozsyła wprowadzane zmiany do sąsiednich obszarów, zapewniając natychmiastowe sprzężenie zwrotne, wpływające na cały system.

Pozwala to na optymalizację pad ringu i połączeń pakiet-pakiet z punktu widzenia parametrów, kosztów i produkowalności jeszcze przed szczegółową realizacją PoP. Na rysunku 2 pokazano kilka symulacji ułożenia wykonanych za jego pomocą. (KKP).

Zobacz więcej w kategorii: Technika
Komunikacja
Moduły komunikacyjne do sieci 5G
Komunikacja
Technologia 5G - kierunki rozwoju
Projektowanie i badania
Nowe możliwości projektowe w Arm Keil MDK v6
Komunikacja
Konserwacja predykcyjna w oparciu o uczenie maszynowe i IIoT
Zasilanie
Kryteria wyboru konwertera DC-DC do aplikacji medycznych
Optoelektronika
Inteligentne wyświetlacze firmy DWIN w ofercie Unisystemu
Zobacz więcej z tagiem: Artykuły
Targi zagraniczne
Międzynarodowa wystawa i warsztaty na temat kompatybilności elektromagnetycznej EMV 2025
Statyczne
Logowanie
Targi krajowe
Warsaw Industry Week 2025 - 9. edycja
Zapytania ofertowe
Unikalny branżowy system komunikacji B2B Znajdź produkty i usługi, których potrzebujesz Katalog ponad 7000 firm i 60 tys. produktów