Czy mikrosuperkondensatory będą przełomem w zasilaniu urządzeń mobilnych?

W konkursie "Innowacja jest kobietą" w bieżącym roku zwyciężczynią została dr Karolina Laszczyk z Politechniki Wrocławskiej prowadząca badania nad miniaturyzacją urządzeń, w tym nad chipowymi superkondensatorami zwanymi również kondensatorami elektrochemicznymi. W konkursie Fundacji Kobiety Nauki - Polska Sieć Kobiet Nauki nagradzane są autorki innowacyjnych rozwiązań. Badaczka z Międzywydziałowego Zakładu Mikroinżynierii i Fotowoltaiki w opracowanym miniaturowym superkondensatorze wykorzystała nanorurki węglowe.

Posłuchaj
00:00

Superkondensatory, podobnie jak baterie, służą do gromadzenia energii. W odróżnieniu jednak od nich bardzo szybko, np. w ciągu sekund, ładują się i rozładowują. Obecnie baterie i superkondensatory uzupełniają się - baterie dostarczają energii np. do jak najdłuższej pracy silnika, a superkondensatory dostarczają moc, aby silnik mógł gwałtownie przyspieszyć. Współczesne superkondensatory nie są w stanie zgromadzić takiej ilości energii, jak baterie.

W mikrosuperkondensatorze dr Karoliny Laszczyk elektrody są tysiące razy mniejsze niż w kondensatorze standardowym, a przy tym mają identyczne osiągi, tj. pojemność, napięcie zasilania, energię i moc. Do miniaturyzacji przyczyniły się nanorurki węglowe, które mogą gromadzić więcej ładunków elektrycznych w tej samej objętości i lepiej przewodzą prąd elektryczny. Dzięki temu z mniejszej objętości uzyskuje się podobną, a nawet wyższą energię.

Postęp w miniaturyzacji superkondensatorów może być użyteczny przy tworzeniu coraz mniejszych urządzeń elektronicznych czy układów scalonych. Kiedy zmniejsza się wymiary elektrod takiego superkondensatora wymiana jonów między katodą i anodą zachodzi znacznie szybciej, dzięki czemu czas ładowania skraca się do mili- a nawet mikrosekund.

Pojedynczy superkondensator opracowany przez dr Karolinę Laszczyk ma postać płaskiego chipa o rozmiarach 0,7 x 0,9 x 0,01 mm. Chipy te można ze sobą łączyć szeregowo i równolegle, dzięki czemu można modyfikować ich osiągi. Nie ma ograniczenia liczby łączonych elementów. - W pojedynczym procesie udało się wytworzyć około 4,7 tys. mikrosuperkondensatorów upakowanych na powierzchni o średnicy 10 cm - mówi dr Laszczyk.

Na zdjęciu: mikrosuperkondensatory na chipie (z lewej) oraz aluminiowy kondensator elektrolityczny (z prawej) o identycznych osiągach, tj. pojemności, napięciu zasilania i szybkości (źródło: Karolina Laszczyk, Advanced Energy Materials)

źródło: naukawpolsce.pap.pl

Powiązane treści
Na systemach zasilania można zarobić
Globalne dostawy urządzeń elektronicznych wzrosną w 2018 roku o 2,1%
Nanorurki i grafen posłużą do budowy superkondensatorów
Czy superkondensatory z grafenu wywołają prawdziwą ekspansję samochodów elektrycznych?
W ciągu pięciu lat wartość rynku superkondensatorów podwoi się
Producent kondensatorów MLCC Holy Stone zwiększa moce produkcyjne
Producenci kondensatorów tworzą poradniki na temat dobierania zamienników
Kondensatory - rynek rośnie, elementy maleją
Zobacz więcej w kategorii: Gospodarka
Aktualności
Alphabet wyda na sztuczną inteligencję 185 mld dolarów
Produkcja elektroniki
Chiński gigant elektroniki mocy Sungrow zbuduje pod Wałbrzychem fabrykę falowników PV i magazynów energii za 230 mln euro
PCB
Biodegradowalne płytki PCB: szansa dla elektroniki o krótkim cyklu życia
Produkcja elektroniki
Ukazał się nowy katalog produktowy Grupy Renex
Mikrokontrolery i IoT
Texas Instruments kupuje Silicon Labs za 7,5 mld USD i wzmacnia segment bezprzewodowej łączności IoT
Komponenty
Positron pozyskuje 230 mln USD na ASIC do inferencji AI. Startup stawia na architekturę „memory-first”
Zobacz więcej z tagiem: Artykuły
Magazyn
Styczeń 2026
Magazyn
Grudzień 2025
Magazyn
Listopad 2025

Projektowanie układów chłodzenia w elektronice - metody obliczeniowe i symulacyjne

Rosnące straty mocy w nowoczesnych układach elektronicznych sprawiają, że zarządzanie temperaturą przestaje być jedynie zagadnieniem pomocniczym, a staje się jednym z kluczowych elementów procesu projektowego. Od poprawnego odprowadzania ciepła zależy nie tylko spełnienie dopuszczalnych warunków pracy komponentów, lecz także długoterminowa niezawodność urządzenia, jego trwałość oraz zgodność z obowiązującymi normami. W niniejszym artykule przedstawiono uporządkowane podejście do projektowania układów chłodzenia, obejmujące metody obliczania strat mocy, analizę termiczną oraz wykorzystanie narzędzi symulacyjnych, w tym modeli cieplnych implementowanych w środowiskach symulacji elektrycznych.
Zapytania ofertowe
Unikalny branżowy system komunikacji B2B Znajdź produkty i usługi, których potrzebujesz Katalog ponad 7000 firm i 60 tys. produktów