Czy obliczenia optyczne rozwiną sztuczną inteligencję?

Oczekuje się, że w niedalekiej przyszłości - napędzane postępami w fotonice krzemowej i optyce kwantowej - rzeczywistością staną się obliczenia optyczne, które obecnie są wciąż na wczesnym etapie. Łańcuch dostaw dla obliczeń optycznych wciąż się rozwija. Firmy foundry, takie jak GlobalFoundries i LioniX, zmierzają w kierunku produkcji zintegrowanych chipów do obliczeń optycznych i kwantowych. W optyce kwantowej łańcuch dostaw staje się coraz bardziej ustrukturyzowany.

Posłuchaj
00:00

Niektóre duże firmy przeniosły swoją uwagę z obliczeń optycznych na optyczne I/O, ale nadal pojawiają się start-upy w dziedzinie obliczeń optycznych, które badają różne podejścia. Procesory optyczne są przeznaczone przede wszystkim do zadań akceleracji i wnioskowania AI, ale także do wysokiej klasy zastosowań niszowych, natomiast optyczne komputery kwantowe, wykorzystujące kubity i inne efekty kwantowe, są przeznaczone do zastosowań takich jak symulacja, optymalizacja i AI/ML.

Przewiduje się, że rynek procesorów optycznych osiągnie 3 mld USD w 2034 roku, przy CAGR na poziomie 50% w latach 2027-2034. Z kolei rynek kwantowych komputerów optycznych ma w 2034 r. osiągnąć 300 mln USD, przy wskaźniku CAGR równym 40% w tym samym okresie. Komputery kwantowe oparte na fotonice mają zanotować znaczny wzrost począwszy od 2030 r., na czele z firmami takimi, jak Quandela, QUIX i Pasqal, a do 2034 r. rynek będzie wart setki milionów dolarów.

- Pierwsze dostawy procesorów optycznych pojawią się około 2027-28 roku, początkowo dla niestandardowych systemów wdrażających częściowo tę technologię, a przychody będą w dużej mierze pochodzić z usług NRE (Non-Recurring Engineering). Do roku 2028 na rynek wejdą procesory optyczne ogólnego przeznaczenia, a od 2029 będą je stopniowo integrować pierwsi użytkownicy i producenci OEM. Do 2034 roku w Grupie Yole spodziewamy się, że dostawy procesorów optycznych osiągną prawie 1 milion sztuk, co ustanowi rynek wart wiele miliardów dolarów - mówi dr Eric Mounier, główny analityk ds. fotoniki i czujników w Yole Group.

Obliczenia optyczne nie są nową koncepcją i istnieje wiele sposobów implementacji bramek optycznych, z których obecnie najbardziej obiecujące są fotoniczne układy scalone i optyka kwantowa. Jednak mimo postępu, praktyczne optyczne bramki logiczne nadal stoją przed poważnymi wyzwaniami. Aby konkurować z bramkami elektronicznymi, muszą spełnić kluczowe kryteria, takie jak kaskadowość, skalowalność i odzyskiwanie po stratach optycznych. Większość obecnych badań koncentruje się na pojedynczych bramkach lub prostych obwodach, a komputery optyczne na dużą skalę są wciąż na wczesnym etapie rozwoju.

Jako kluczowy czynnik umożliwiający przetwarzanie optyczne postrzegana jest fotonika krzemowa - ze względu na jej skalowalność. Postępy w dziedzinie zintegrowanej optyki, wykorzystujące materiały takie jak SOI (Silicon-on-Insulator), SiN (Silicon Nitride), TFLN (Thin-Film Lithium Niobate), grafen, BTO (Barium Titanate) i polimery, mogą doprowadzić do opracowania praktycznych procesorów optycznych opartych na fotonicznych układach scalonych. Ulepszenia te przyniosą również korzyści optyce kwantowej, ułatwiając tworzenie kwantowych komputerów optycznych z większą liczbą kubitów w kompaktowej obudowie.

Istnieje wiele podejść do tworzenia procesora optycznego - analogowego lub cyfrowego - przy użyciu różnych mediów optycznych, takich jak fotoniczne układy scalone, FSO (Free-Space Optics) lub światłowody. W dziedzinie optycznych komputerów kwantowych wykorzystujących kubity badane są możliwości kubitów fotonowych bądź zastosowania fotoniki do kontrolowania kubitów niefotonicznych, takich jak uwięzione jony i zimne atomy. Niektóre firmy opracowują optyczne komputery kwantowe, które nie opierają się na kubitach, a zamiast tego wykorzystują optyczne efekty kwantowe i nieliniowość. Nowe materiały, takie jak metapowierzchnie czy SiC, również są badane pod kątem procesorów optycznych, choć wciąż jest to wczesny etap badań.

Ilustracje: Yole Group

Źródło: Yole Group

Powiązane treści
Złącza optyczne - najpopularniejsze modele
Rynek systemów elektrooptycznych na drodze do znacznego wzrostu
Rynek usług i produktów związanych z AI - blisko 1 bln dolarów w 2027 roku
GL Optic: Elektronikom proponujemy gotowe narzędzia do wykonywania pomiarów optycznych zapewniające dużą dokładność i powtarzalność
Zobacz więcej w kategorii: Gospodarka
Komponenty
Rochester Electronics zwiększa dostępność układów Lattice dla aplikacji o długim cyklu życia
Zasilanie
DigiKey prezentuje pierwszy w branży konfigurator zasilaczy dostępny online
Projektowanie i badania
Biblioteka przewodników firmy Mouser
Zasilanie
Nowy e-book Mouser i YAGEO: elementy pasywne dla zasilania pojazdów elektrycznych
Projektowanie i badania
OVHcloud uruchamia pierwszą w Europie platformę Quantum-as-a-Service
Projektowanie i badania
Komputery kwantowe to wciąż odległa przyszłość - ale coraz bardziej konieczna
Zobacz więcej z tagiem: Aktualności
Informacje z firm
Kompleksowe rozwiązania dla przemysłu elektronicznego - Grupa RENEX na WIW 2025
Informacje z firm
Wizyta Cortex Systems w DGTronik
Informacje z firm
CleanBox Reeco wyróżniony w konkursie „Liderzy Innowacji Pomorza i Kujaw 2025”

Ukryte koszty poprawek. Dlaczego naprawa projektu zawsze kosztuje więcej niż dobre planowanie - czyli im później wykryjesz błąd, tym drożej go naprawisz

Większość projektów elektronicznych nie upada dlatego, że zabrakło budżetu na komponenty — lecz dlatego, że zbyt późno wykryto błędy projektowe. To one, a nie same materiały, generują największe koszty: dodatkowe prototypy, opóźnienia, ponowne testy, a często nawet przebudowę całych urządzeń.
Zapytania ofertowe
Unikalny branżowy system komunikacji B2B Znajdź produkty i usługi, których potrzebujesz Katalog ponad 7000 firm i 60 tys. produktów