Od oscylatorów kwarcowych po generatory MEMS. Przegląd źródeł częstotliwości taktowania urządzeń elektronicznych

Zegar taktujący to "serce" większości urządzeń elektronicznych. Generuje on przebieg o określonej częstotliwości, będący sygnałem odniesienia lub synchronizacji bloków urządzenia. Dokładność i stabilność zegara bezpośrednio przekłada się na jakość realizowanych zadań. Dlatego wybór źródła częstotliwości taktowania nie jest sprawą błahą, tym bardziej że możliwości jest wiele, od generatorów LRC i ceramicznych, przez rezonatory kwarcowe, w tym oscylatory z pętlą fazową i czujnikami temperatury, aż po generatory MEMS.

Posłuchaj
00:00
Spis treści

Źródła częstotliwości taktowania dzieli się zasadniczo na dwie grupy: z rezonansem mechanicznym - tzn. rezonatory ceramiczne i kwarcowe oraz z rezonansem elektrycznym, do której zaliczane są rezonatory LRC (rys. 1). Wady i zalety komponentów obu rodzajów stanowią wstępne kryterium wyboru generatora częstotliwości dla danej aplikacji (tabela 1). Będące głównym tematem tego artykułu rezonatory mechaniczne, a zwłaszcza kwarcowe, charakteryzuje np. duża początkowa dokładność. Rezonatory te między sobą mogą się natomiast różnić pod względem poboru mocy.

Rys. 1. Źródła częstotliwości taktowania dzielimy na elementy z rezonansem mechanicznym i elektrycznym. Na „a” przykład oscylatora z rezonatorem kwarcowym w konfiguracji Pierce’a oraz na „b” oscylatora RC

Rys. 2. Zastępczy schemat rezonatora kwarcowego z uwzględnieniem pojemności elektrod oraz przewodów łączących, reprezentowanych przez kondensator C0. Wartości pozostałych elementów zależą od parametrów mechanicznych płytki rezonatora (C1, L1) oraz tłumienia drgań (R1)

Rezonatory ceramiczne pobierają zwykle większy prąd niż kwarcowe oraz ceny i miejsca zajmowanego na płytce - pod tymi względami atrakcyjniejszym rozwiązaniem są rezonatory ceramiczne. Oscylatory z rezonansem elektrycznym z kolei są znacznie tańsze, ale jednocześnie nie gwarantują dużej dokładności, która na dodatek w większym stopniu niż u konkurencyjnych komponentów z rezonansem mechanicznym zależy od wahań temperatury oraz napięcia zasilania. Błąd częstotliwości może tu sięgać 5-50% nominalnej częstotliwości rezonansowej.

Rezonatory kwarcowe

Komponenty kwarcowe, które włączone w pętlę sprzężenia zwrotnego wzmacniacza operacyjnego (rys. 1) pełnią rolę obwodu rezonansowego (rys. 2) i ciągle są jednym z najpopularniejszych źródeł częstotliwości wzorcowej. Ich głównym elementem jest płytka wycięta z kryształu SiO2 (rys. 3). Na skutek wibracji kryształu generowany jest sygnał o określonej częstotliwości podstawowej lub jej harmonicznych.

Rys. 3. Kryształ kwarcu

Rys. 4. Aby uzyskać odpowiednie właściwości temperaturowe oraz elektryczno-mechaniczne płytkę wycina się z kryształu kwarcu wykonując kombinację cięć wzdłuż osi X, Y i Z, określanych jako np. cięcia AT, BT lub CT

Szereg czynników wpływa na stabilność częstotliwości tego przebiegu, jak i na możliwość generacji sygnałów o częstotliwościach nieharmonicznych. Oprócz tego, że zakłócają one właściwy sygnał w momencie, gdy kryształ zaczyna drgać w niepożądany sposób wibracje te mogą się nawzajem znosić. W określonych warunkach otoczenia, które np. wzmocnią niepożądane wibracje rezonator może wtedy nawet nagle przestać działać.

Wymaganą częstotliwość drgań rezonatora uzyskuje się przycinając krawędzie kryształu pod odpowiednim kątem do jego poszczególnych osi. Wybór osi oraz kąta determinuje fizyczne oraz elektryczne właściwości rezonatora - na przykład płytka wycięta z kryształu w płaszczyźnie osi Y charakteryzować się będzie dodatnim współczynnikiem temperaturowym. Płytki wycina się też wykonując kombinację cięć pod różnymi kątami względem osi X, Y i Z kryształu. Ich poszczególne typy rozróżnia się wprowadzając odpowiednie nazewnictwo, w tym np. cięcia BT, CT, DT lub FT (rys. 4).

Jednym z częściej wykonywanych jest cięcie AT, tzn. pod kątem 35º do osi Y. Wadą płytek produkowanych w ten sposób jest duża wrażliwość na zmiany temperatury. Innym, równie popularnym cięciem jest SC. Płytki kwarcowe wytwarzane w ten sposób są wprawdzie nieco droższe niż te z cięcia AT, ale jednocześnie charakteryzuje je duża stabilność temperaturowa. Dzięki temu są one chętniej wykorzystywane do budowy oscylatorów o większej dokładności.

Rys. 5–7. Stabilność częstotliwości w dużej mierze zależy od sposobu wycięcia płytki kryształu kwarcu. Na wykresach przedstawiono charakterystyki zmian częstotliwości w funkcji temperatury dla płytek o cięciu BT (rys. 5.), DT (rys. 6.) oraz CT (rys. 7.)

Mimo możliwości wpływania ma elektryczno-mechaniczne właściwości płytek kwarcowych przez odpowiednie kształtowanie struktury kwarcu niektórych problemów nie da się w ten sposób całkowicie rozwiązać. Rezonatory kwarcowe wykazują bowiem tendencję do zmiany częstotliwości rezonansowej m.in. na skutek starzenia się, jak i w wyniku zmiany warunków otoczenia takich jak np. temperatura, wilgotność, wibracje i wstrząsy.

Spis treści
Zobacz więcej w kategorii: Technika
Elektromechanika
Jak wózek do drukarki 3D może wpłynąć na komfort pracy z technologią druku trójwymiarowego?
Produkcja elektroniki
MIRTEC - nowa era 3D AOI w inspekcji powłok lakierniczych
Produkcja elektroniki
Przemysłowy druk 3D – co warto o nim wiedzieć?
Optoelektronika
Norma IK - jak chronić wyświetlacze przed uszkodzeniami mechanicznymi?
Projektowanie i badania
Standardy badania odporności na ESD
Projektowanie i badania
Projektowanie układów chłodzenia w elektronice - metody obliczeniowe i symulacyjne
Zobacz więcej z tagiem: Artykuły
Magazyn
Styczeń 2026
Magazyn
Grudzień 2025
Magazyn
Listopad 2025

Projektowanie układów chłodzenia w elektronice - metody obliczeniowe i symulacyjne

Rosnące straty mocy w nowoczesnych układach elektronicznych sprawiają, że zarządzanie temperaturą przestaje być jedynie zagadnieniem pomocniczym, a staje się jednym z kluczowych elementów procesu projektowego. Od poprawnego odprowadzania ciepła zależy nie tylko spełnienie dopuszczalnych warunków pracy komponentów, lecz także długoterminowa niezawodność urządzenia, jego trwałość oraz zgodność z obowiązującymi normami. W niniejszym artykule przedstawiono uporządkowane podejście do projektowania układów chłodzenia, obejmujące metody obliczania strat mocy, analizę termiczną oraz wykorzystanie narzędzi symulacyjnych, w tym modeli cieplnych implementowanych w środowiskach symulacji elektrycznych.
Zapytania ofertowe
Unikalny branżowy system komunikacji B2B Znajdź produkty i usługi, których potrzebujesz Katalog ponad 7000 firm i 60 tys. produktów