Dwusiarczek molibdenu poważnym konkurentem grafenu

Grafen już okrzyknięto przyszłością elektroniki. Materiałów o podobnej, jednowarstwowej budowie jest jednak więcej. Dwusiarczek molibdenu ma równie ciekawe własności jak grafen. Związek ten występuje w wielu skałach i, zdaniem badających go naukowców z Wydziału Fizyki Uniwersytetu Warszawskiego, może zdeklasować grafen w zastosowaniach elektronicznych. Badania pozwoliły zaproponować precyzyjniejszy niż dotąd model zjawisk zachodzących w sieci krystalicznej dwusiarczku molibdenu.

Posłuchaj
00:00

Kilka lat temu zauważono, że tak jak z grafitu otrzymuje się grafen, tak z wielu innych kryształów można uzyskać warstwy grubości pojedynczych atomów. Udało się je wytworzyć m.in. dla chalkogenków metali przejściowych, czyli siarczków, selenków i tellurków. Szczególnie ciekawym materiałem okazały się warstwy dwusiarczku molibdenu (MoS2).

Związek ten występuje w naturze jako molibdenit, krystaliczny minerał często przyjmujący postać charakterystycznych sześciokątnych płytek o srebrzystym zabarwieniu. Molibdenit, który przypomina grafit i często bywał z nim mylony, znajduje się w skałach na całym świecie. Od lat stosowano go przy wytwarzaniu smarów i stopów metali. Podobnie jak w przypadku grafitu, własności jednoatomowych warstw MoS2 długo pozostawały niezauważone.

Z punktu widzenia zastosowań w elektronice, warstwowy dwusiarczek molibdenu ma istotną przewagę nad grafenem: charakteryzuje się obecnością tzw. przerwy energetycznej. Jej istnienie oznacza, że elektrony nie mogą przyjmować dowolnych energii i przykładając pole elektryczne materiał można przełączać między stanem, w którym przewodzi prąd, a stanem, w którym zachowuje się jak izolator.

Według szacunków, wyłączony tranzystor z dwusiarczku molibdenu zużywałby kilkaset tysięcy razy mniej energii niż tranzystor krzemowy. Grafen w ogóle nie ma przerwy energetycznej i zbudowanych z niego tranzystorów nie da się całkowicie wyłączyć.

Cennych informacji o strukturze krystalicznej i zachodzących w niej zjawiskach dostarcza analiza światła rozproszonego w materiale. - W przypadku materiałów warstwowych kształt linii ramanowskich tłumaczono do tej pory zjawiskami związanymi z pewnymi charakterystycznymi drganiami sieci krystalicznej. My wykazaliśmy, że w warstwowym dwusiarczku molibdenu efekty przypisywane tym drganiom muszą w rzeczywistości pochodzić, przynajmniej w części, od innych, dotychczas nieuwzględnianych drgań sieci - wyjaśnia doktorantka Katarzyna Gołasa.

Obecność drgań nowego typu w materiałach warstwowych ma wpływ na zachowanie elektronów. W konsekwencji materiały te muszą wykazywać nieco inne właściwości elektroniczne od dotychczas przewidywanych.

- Grafen był pierwszy. Jego unikatowe cechy wzbudzają spore, ciągle rosnące zainteresowanie, zarówno wśród naukowców, jak i ze strony przemysłu. Nie wolno jednak zapominać o innych materiałach warstwowych. Jeśli je dobrze poznamy, w wielu zastosowaniach mogą się okazać lepsze od grafenu - podsumowuje dr hab. Adam Babiński.

Opis odkrycia polskich naukowców, dokonanego we współpracy z Laboratoire National des Champs Magnétiques Intenses w Grenoble, ukazał się w czasopiśmie "Applied Physics Letters".

źródło: naukawpolsce.pap.pl
zdjęcie: FUW

Powiązane treści
Politechnika Łódzka wytwarza grafen o większej wytrzymałości
Nanorurki i grafen posłużą do budowy superkondensatorów
Samsung ogłosił odkrycie metody uzyskiwania grafenu na dużej powierzchni
Centrum grafenu w Warszawie
Na AGH powstaje nowy materiał na bazie grafenu
Pokrycie z grafenu może chronić i ogrzewać szyby
IBM buduje grafenowy procesor
Nano Carbon rozpocznie produkcję arkuszy grafenu na folii miedzianej
Zobacz więcej w kategorii: Gospodarka
Komponenty
RS przejmuje Distrelec - powstaje nowy potentat dystrybucji przemysłowej
Komponenty
Generatywna sztuczna inteligencja zmienia globalny rynek procesorów
Aktualności
Samsung otwiera w Warszawie największe centrum biznesowe w Europie
Aktualności
Samsung i OpenAI nawiązują strategiczne partnerstwo na rzecz rozwoju globalnej infrastruktury AI
Produkcja elektroniki
Powstaje gigant wart 4,4 mld dolarów - czwarty co do wielkości dostawca sprzętu do produkcji płytek półprzewodnikowych w USA
Optoelektronika
Smartwatche napędzają rozwój wyświetlaczy Micro LED
Zobacz więcej z tagiem: Artykuły
Magazyn
Wrzesień 2025
Magazyn
Sierpień 2025
Magazyn
Lipiec 2025

Najczęstsze błędy przy projektowaniu elektroniki i jak ich uniknąć

W elektronice „tanio” bardzo często znaczy „drogo” – szczególnie wtedy, gdy oszczędza się na staranności projektu. Brak precyzyjnych wymagań, komponent wycofany z produkcji czy źle poprowadzona masa mogą sprawić, że cały produkt utknie na etapie montażu SMT/THT albo testów funkcjonalnych. Konsekwencje są zawsze te same: opóźnienia i dodatkowe koszty. Dlatego warto znać najczęstsze błędy, które pojawiają się w projektach elektroniki – i wiedzieć, jak im zapobiegać.
Zapytania ofertowe
Unikalny branżowy system komunikacji B2B Znajdź produkty i usługi, których potrzebujesz Katalog ponad 7000 firm i 60 tys. produktów