Aby dobrze dobrać zasilacz do danej aplikacji i docenić walory techniczne kryjące się w zaawansowanych specjalistycznych rozwiązaniach zasilających, trzeba cokolwiek wiedzieć na temat ich funkcjonalności i parametrów. Wiedza ta pozwala na formułowanie pytań kierowanych potem do dostawców, a także na poszerzenie horyzontów na temat tego, co można osiągnąć w tworzonej aplikacji. Inaczej dyskusja sprowadzana jest do podstawowych danych, takich jak napięcie wyjściowe, moc, obudowa, złącze DC i cena, co nikomu nie daje wiele przestrzeni do manewru.
Kupujący zasilacze często nie mają wystarczających kompetencji i doświadczenia, aby umieć ocenić produkt, więc nietrudno o nadużycia. Nie każdy zna się na zasilaczach, a im aplikacja lub wytwarzane urządzenie bardziej odbiega od elektroniki, tym tej wiedzy jest w naturalny sposób mniej. Klienci z branż odległych od elektroniki z reguły nie chcą płacić więcej za produkty renomowane i o gwarantowanej jakości, raczej kupują jednostki najtańsze i nawet jak później urządzenie nie działa prawidłowo, nie są w stanie powiązać anomalii z kiepskim zasilaniem i nietrafionym wyborem. Część z nich uczy się na błędach i takie ryzyko jest dla nich nauczką na przyszłość, niemniej, ponieważ temat psucia rynku przez tanie zasilacze azjatyckie od lat jest dyżurnym tematem branży, zapewne takie wpadki nie są powodem do chwały i firmy skrzętnie je ukrywają.
Warto zatem poświęcić chwilę na omówienie funkcji, które tworzą wartość dodaną do podstawowego zestawu związanego z konwersją energii elektrycznej (moc, napięcia).
W przypadku zasilaczy bezprzerwowych takim istotnym dodatkiem są możliwości diagnostyczne zasilaczy: monitorowanie stanu akumulatorów, kontrola sprawności zasilacza, parametrów sieci zasilającej, możliwość szybkiego ładowania oraz korekta napięcia ładowania w zależności od temperatury, która przedłuża żywotność akumulatorów. Zdolność do chwilowego przeciążania to z kolei cecha, która przydaje się w zastosowaniach przemysłowych i najlepiej, aby poziom dopuszczalnego przeciążenia oraz podstawowe parametry, takie jak napięcie, progi aktywacji zabezpieczeń, można było programować samodzielnie z komputera (takie możliwości daje zasilacz konfigurowalny).
Wiele osób ocenia jakość zasilacza na wagę i nie jest to pozbawione sensu, bo tani produkt z małymi radiatorami, odchudzonymi filtrami i minimalnej wielkości transformatorem zawsze będzie lżejszy od tego porządnie wykonanego. Warto przyjrzeć się, ile ważą zasilacze renomowanych firm po to, aby porównać je z innymi.
Użyteczna funkcjonalność, jaka pojawia się dzisiaj często w zaawansowanych jednostkach zasilających, obejmuje ponadto takie dodatki, jak np. możliwość regulacji wyjściowego napięcia w niewielkim zakresie trymerem, po to, aby skompensować spadek napięcia na przewodach wyjściowych. Do tego samego celu służą zwielokrotnione zaciski wyjściowe lub też możliwość podłączenia dwóch dodatkowych przewodów pomiarowych bezpośrednio do zacisków obciążenia (tzw. czteroprzewodowe połączenie kelwinowskie). Taki sposób zapewnia znakomite parametry napięcia wyjściowego (statyczne i dynamiczne) w zasilaczach dużej mocy i o niskim napięciu wyjściowym.
Od strony układowej zasilacze wyposaża się dzisiaj we wszechstronne układy zabezpieczające, rozbudowane filtry wejściowe, sterowniki zapewniające sygnalizację stanu zasilacza i podobne obwody ochronne na tyle skuteczne, że awaria na skutek przeciążenia, stanu nieustalonego lub zwykłego błędu podczas montażu instalacji staje się praktycznie niemożliwa.
Szeroki zakres napięcia wejściowego to kolejny parametr, który wiele mówi o nowoczesności. Standard tanich jednostek to 100–240 VAC, lepsze działają w zakresie 85–265 VAC, najlepsze w jeszcze szerszych widełkach.
Nawet jeśli nie korzystamy z sieci innej niż 230 VAC, to gdy zakres dopuszczalnych napięć jest szeroki, korzystnie przekłada się to na odporność zasilacza na krótkotrwałe zaniki napięcia i przepięcia o dużej wartości.
Asortyment dostępnych na rynku zasilaczy poszerza się także o wersje ze wzmocnioną izolacją, czyli o niskiej upływności. Do niedawna były one rzadkością i wykorzystywane tylko w aplikacjach medycznych, niemniej poszerzająca się oferta wskazuje, że takie jednostki trafiają także do urządzeń przemysłowych, do precyzyjnej aparatury pomiarowej oraz rozbudowanych systemów, gdzie łączone są obwody na różnych potencjałach. W takich przypadkach zasilacz o wzmocnionej izolacji jest w stanie zapewnić stabilność i jakość działania układów pomiarowych.
Jeszcze inne rozwiązania to zasilacze czteroćwiartkowe, czyli takie, które mogą płynnie zmieniać funkcję z dostarczania energii do obciążenia na jej odbieranie (jak obciążenie elektroniczne) bez konieczności przełączania obwodów przekaźnikami.
Na koniec warto wymienić korzyści z obecności cyfrowego łącza komunikacyjnego w zasilaczach. Pozwala ono łączyć kilka jednostek równolegle, zapewniając równomierny podział mocy oraz tworzyć w ten sposób konfiguracje nadmiarowe (z redundancją), w których jest możliwość wymiany jednego zasilacza z zestawu bez wyłączania reszty.
Sprawność i miniaturyzacja
Duża sprawność konwersji energii elektrycznej to temat zawsze istotny w obszarze zasilania, gdyż razem z kolejnymi procentami sprawności poprawia się wiele innych parametrów aplikacyjnych. Są to wielkość zasilacza, zakres temperatur pracy, warunki chłodzenia, żywotność, a w jakiejś części także odporność środowiskowa. Im większa sprawność, tym mniej ciepła jest tracone podczas konwersji energii, a jak mówi luźna interpretacja prawa Arrheniusa "podniesienie temperatury reakcji chemicznej o 10 stopni przyspiesza ją dwukrotnie. Taką reakcją może być proces degradacji izolacji, wysychanie elektrolitu w kondensatorach, starzenie się tworzyw sztucznych itp. Dziesięć stopni różnicy temperatury w obudowie to inaczej mówiąc dwukrotnie dłuższa żywotność komponentów zasilacza i taką różnicę mogą zapewnić 2–3 punkty procentowe sprawności konwersji energii więcej.
Miniaturyzacja to kolejny po sprawności parametr zasilaczy, który zawsze jest aktualny, bo mała, ale wydajna jednostka zasilająca ułatwia instalację, pozwala na lepszą integrację z konstrukcją urządzenia lub maszyny oraz z dużym prawdopodobieństwem jest nowocześniejsza od większych (starszych) rozwiązań.
Wysoka sprawność to oszczędność energii zasilającej, a więc mniejsze rachunki, a w zasilaczach buforowych dłuższy czas pracy z danej pojemności akumulatora.