Nowe materiały półprzewodnikowe w zasilaczach
Wiele nowych rozwiązań z obszaru konwersji mocy elektrycznej wiąże się z wykorzystaniem podzespołów na bazie nowych materiałów półprzewodnikowych, takich jak azotek galu (GaN) lub węglik krzemu (SiC). Elementy takie używane są w modułach inwerterów, przetwornicach oraz ładowarkach w aplikacjach energoelektronicznych, e-mobilności i podobnych. Sprawność i wydajność takich jednostek mają kluczowy wpływ na istotne parametry pojazdu, czas ładowania oraz koszty eksploatacji. Dlatego w takich zastosowaniach, gdzie czas eksploatacji liczy się w wielu latach, elementy te dają duże oszczędności.
Mimo to, większość jednostek zasilających dostępnych na rynku oraz falowników budowanych jest z użyciem tranzystorów krzemowych MOSFET oraz IGBT. W wielu aplikacjach pracują one blisko maksymalnych dopuszczalnych parametrów pracy i w jednostkach dużej mocy muszą być łączone równolegle dla zwiększenia obciążalności. Istnieje zatem bardzo duże prawdopodobieństwo, że technologia ta nie będzie w stanie sprostać wymaganiom stawianym następnym generacjom pojazdów i maszyn, gdyż obsługa coraz większych mocy stanie się problematyczna.
Stąd upowszechnienie się półprzewodników takich jak GaN w zasilaczach jest tylko kwestią czasu, ale do momentu, kiedy zasilacz tego typu stanie się produktem masowym, jeszcze daleko.
Tranzystory GaN mają o połowę niższą wartość rezystancji włączenia RDS(ON), niż jest to w strukturach krzemowych, to zaś oznacza dwukrotnie mniejsze straty przewodzenia. W związku z tym zmniejsza się również ilość generowanej podczas pracy układu energii cieplnej oraz możliwe jest uproszczenie konstrukcji systemu chłodzenia. Niemniej, w porównaniu z tranzystorami krzemowymi, przełączniki GaN są trudniejsze w sterowaniu. Używając GaN-ów, trzeba też pokonać problemy pojawiające się przy dużej szybkości przełączania tych elementów związane z obecnością reaktancji pasożytniczych, będących źródłem oscylacji, co wymaga poświęcenia na projekt dodatkowego czasu i poniesienia kosztów. Strome zbocza (duże wartości dV/dt) wywołują oscylacje o wysokiej częstotliwości, wywołujące zakłócenia elektromagnetyczne (EMI), które należy odfiltrować oraz tłumić, aby zapobiec uszkodzeniom od przepięć. Ponadto szybkie przełączanie GaN-ów utrudnia ich ochronę przed przeciążeniem, ponieważ mogą one ulec uszkodzeniu szybciej, niż są w stanie zareagować obwody zabezpieczające.
Są też droższe od wersji krzemowych, co przy silnie konkurencyjnym rynku zasilania ogranicza tempo ich ekspansji w zasilaczach. Paradoksalnie łatwiej można kupić dzisiaj zasilacz małej mocy z przełącznikiem mocy GaN, np. ładowarkę do telefonu niż zasilacz dużej mocy, gdyż do takich aplikacji opracowano specjalne scalone sterowniki z takimi elementami. Oczywiście przed technologią GaN jest świetlana przyszłość, ale jeszcze minie sporo czasu, zanim rozwiązania staną się powszechne.
Więcej bezpieczeństwa we wszystkich typach zasilaczy
Zasilacze impulsowe dostarczają energii dla coraz bardziej wrażliwych układów i systemów, np. urządzeń medycznych, pomiarowych, do rozproszonych instalacji zasilanych z różnych sieci. Dlatego zagadnienia związane z zapewnieniem ochrony przed niebezpiecznym napięciem sieci są bardzo istotne.
Zasilacze produkowane są w dwóch klasach ochronności izolacji: podstawowej I i wzmocnionej II. Od strony użytkowej przekłada się to na to, że wersje o bardziej wytrzymałej na przebicie izolacji były domeną konsumenckich zasilaczy adapterowych, te z izolacją podstawową obejmowały całą resztę w tym wszystkie jednostki większej mocy. Izolacja wzmocniona, dla której wymagania mówią o odporności na napięcie testowe 3000 VAC, pozwala podłączyć zasilacz do sieci bez uziemienia, a więc dwoma przewodami. Gdy izolacja jest klasy I (napięcie testowe 1500 VAC), zasilacz podłączany jest trzema przewodami (L, N, PE).
W miarę upływu lat ta reguła coraz częściej przestaje obowiązywać. Wiele zasilaczy dużej mocy jest produkowanych w klasie izolacji II bez względu na to, że są przewidziane do podłączenia trzema przewodami. Taki trend można też postrzegać jako wzrost jakości zasilaczy po stronie bezpieczeństwa elektrycznego. Ponadto mnóstwo zasilaczy ma izolację, która wytrzymuje jeszcze większe napięcie testowe i charakteryzuje się małym prądem upływu, dużo poniżej granicznych progów wyznaczanych w normie EN62368. To także znak, że bezpieczeństwo liczy się coraz bardziej.
Nietrudno zauważyć, że standardem jest też to, że ogromna większość zasilaczy małej i średniej mocy działa w szerokim zakresie napięć wejściowych, od 100 do 240 VAC, a często także 90–265 VAC. To także można odczytywać jako lepsze bezpieczeństwo użytkowania.