Podzespoły dla energoelektroniki są przepustką w nowoczesność

Elektronika dużych mocy, czyli energoelektronika, to sektor, który w ostatnich latach bardzo szybko się rozwija. Powodów jest co najmniej kilka, a za najważniejszy można zapewne uznać dużą liczbę nowych aplikacji, które na niej bazują, jak elektryczna motoryzacja, transport szynowy, aplikacje energii odnawialnej lub indukcyjne systemy grzewcze. Elektronizacji podlega też wytwarzanie i dystrybucja energii elektrycznej, napędy silników dużej mocy w maszynach przemysłowych i wiele innych podobnych obszarów. W takich zastosowaniach elektronika mocy jest w stanie zapewnić wysoką sprawność regulacji i konwersji energii, wysoką niezawodność działania i dużą odporność na przeciążenia.

Posłuchaj
00:00
Spis treści

Moduły mocy

Podzespoły półprzewodnikowe dużej mocy obejmują zarówno szereg elementów dyskretnych, jak i funkcjonalne moduły o różnym stopniu złożoności, jeśli chodzi o strukturę wewnętrzną. Są one przeznaczone do układów półmostkowych lub pełnomostkowych, w wersji jednofazowej i trójfazowej. Najczęściej moduły zawierają 6 tranzystorów mocy, ale często umieszcza się w nich też prostownik, diody usprawniające oraz zabezpieczające. Takie komponenty znajdują się w ofertach wielu producentów półprzewodników i stanowią bazę konstrukcyjną większości napędów, regulatorów i zasilaczy. Występują one w wielu wersjach o różnej topologii, pozwalając zrealizować w prosty sposób stopień mocy. Modułowe półprzewodniki mocy zdobyły rynek również tym, że stanowią zwartą konstrukcję o dobrych parametrach w zakresie odprowadzania ciepła, przy jednoczesnym zapewnieniu izolacji galwanicznej od radiatora. Półprzewodniki mocy to ponadto elementy, które zawsze współpracują z radiatorem lub innym systemem odprowadzania ciepła oraz w ogromnej większości zasilane są wysokimi napięciami, przekraczającymi 350 V. Dlatego ułatwienia związane z izolacją galwaniczną poszczególnych elementów, zapewniające bezproblemowy montaż na metalowym radiatorze, są jednym z najważniejszych źródeł przewagi rynkowej modułów nad elementami dyskretnymi.

Spis treści
Powiązane treści
Gaia – konwertery do wymagających aplikacji
Węglik krzemu SiC – coraz bardziej popularny i dostępny
Tamura wysteruje Twój MOSFET SiC
Zobacz więcej w kategorii: Raporty
Optoelektronika
Oświetlenie LED
Elektromechanika
Przełączniki, przyciski i klawiatury
Optoelektronika
Wyświetlacze i elektroniczny papier
Elektromechanika
Przekaźniki elektromagnetyczne
Komponenty
Producenci oraz dostawcy wiązek kablowych
Zasilanie
Zasilacze na szynę DIN
Zobacz więcej z tagiem: Komponenty
Gospodarka
Positron pozyskuje 230 mln USD na ASIC do inferencji AI. Startup stawia na architekturę „memory-first”
Prezentacje firmowe
Kompaktowy format, pełna funkcjonalność - jak nowe e.MMC odpowiadają na wymagania współczesnych projektów
Prezentacje firmowe
Pojemnościowy przycisk dotykowy od Unisystemu

Projektowanie układów chłodzenia w elektronice - metody obliczeniowe i symulacyjne

Rosnące straty mocy w nowoczesnych układach elektronicznych sprawiają, że zarządzanie temperaturą przestaje być jedynie zagadnieniem pomocniczym, a staje się jednym z kluczowych elementów procesu projektowego. Od poprawnego odprowadzania ciepła zależy nie tylko spełnienie dopuszczalnych warunków pracy komponentów, lecz także długoterminowa niezawodność urządzenia, jego trwałość oraz zgodność z obowiązującymi normami. W niniejszym artykule przedstawiono uporządkowane podejście do projektowania układów chłodzenia, obejmujące metody obliczania strat mocy, analizę termiczną oraz wykorzystanie narzędzi symulacyjnych, w tym modeli cieplnych implementowanych w środowiskach symulacji elektrycznych.
Zapytania ofertowe
Unikalny branżowy system komunikacji B2B Znajdź produkty i usługi, których potrzebujesz Katalog ponad 7000 firm i 60 tys. produktów